Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
4.
JACC Case Rep ; 4(5): 276-279, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35257102

ABSTRACT

A 51-year-old man with past medical history of bioprosthetic aortic valve replacement presented in cardiogenic shock secondary to acute bioprosthesis degeneration with severe aortic regurgitation. Venoarterial extracorporeal membrane oxygenation is contraindicated in patients with severe AI. Use of left atrial venoarterial extracorporeal membrane oxygenation resulted in hemodynamic improvement, allowing patient stabilization for emergency valve-in-valve transcatheter aortic valve replacement. (Level of Difficulty: Advanced.).

5.
J Phys Condens Matter ; 34(22)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35263718

ABSTRACT

In this work a systematic study over a wide number of final thermodynamic states for two gel-forming liquids was performed. Such two kind of gel formers are distinguished by their specific interparticle interaction potential. We explored several thermodynamic states determining the thermodynamic, structural and dynamic properties of both liquids after a sudden temperature change. The thermodynamic analysis allows to identify that the liquid with short range attraction and long range repulsion lacks of a stable gas-liquid phase separation liquid, in contrast with the liquid with short range attractions. Thus, although for some thermodynamic states the structural behavior, measured by the static structure factor, is similar to and characteristic of the gel phase, for the short range attractive fluid the gel phase is a consequence of a spinodal decomposition process. In contrast, gelation in the short range attraction and long range repulsion liquid is not due to a phase separation. We also analyze the similarities and differences of the dynamic behavior of both systems through the analysis of the mean square displacement, the self part of the intermediate scattering function, the diffusion coefficient and theαrelaxation time. Finally, using one of the main results of the non-equilibrium self-consistent generalized Langevin equation theory (NE-SCGLE), we determine the dynamic arrest phase diagram in the volume fraction and temperature (φvsT) plane.

7.
Soft Matter ; 17(7): 1975-1984, 2021 Feb 21.
Article in English | MEDLINE | ID: mdl-33427848

ABSTRACT

In this work we implement a machine learning method to predict the thermodynamic state of a liquid using only its microscopic structure provided by the radial distribution function (RDF). The main goal is to determine the equation of state of the system. The goal is achieved by predicting the density, temperature or both at the same time using only the RDF. We implement and train a machine learning feed forward artificial neural network (ANN) to address the different cases of interest where single or simultaneous predictions are done. Due to its versatility, in this study the Lennard-Jones (LJ) fluid is used as the reference system. The ANN is trained in a wide range of densities and temperatures, covering the liquid-vapour coexistence, liquid phase and supercritical states. We show that the overall percentage relative error of most of the predictions in different cases of study is around 3%. As a practical case of study we use the ANN predictions to determine the pressure equation of state for different isotherms and we found a very good agreement with respect to the exact results. Our ANN implementation is a versatile and useful tool to predict thermodynamic state variables when some information is unknown and, consequently, to enhance the thermodynamic description of liquids.

8.
Soft Matter ; 14(24): 5008-5018, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-29855653

ABSTRACT

We report an experimental and theoretical investigation of glass formation in soft thermo-sensitive colloids following two different routes: a gradual increase of the particle number density at constant temperature and an increase of the radius in a fixed volume at constant particle number density. Confocal microscopy experiments and the non-equilibrium self-consistent generalized Langevin equation (NE-SCGLE) theory consistently show that the two routes lead to a dynamically comparable state at sufficiently long aging times. However, experiments reveal the presence of moderate but persistent structural differences. Successive cycles of radius decrease and increase lead instead to a reproducible glass state, indicating a suitable route to obtain rejuvenation without using shear fields.

9.
Membranes (Basel) ; 7(1)2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28241433

ABSTRACT

The transformation of fog at a non-visible water layer on a membrane of low-density polyethylene (LDPE) and ethylene-vinyl acetate (EVA) was evaluated. Nonionic surfactants of major demand in the polyolefin industry were studied. A kinetic study using a hot fog chamber showed that condensation is controlled by both the diffusion and permanency of the surfactant more than by the change of the surface energy developed by the wetting agents. The greatest permanency of the anti-fog effect of the LDPE/EVA surface was close to 3000 h. The contact angle results demonstrated the ability of the wetting agent to spread out to the surface. Complementarily, the migration of nonionic surfactants from the inside of the polymeric matrix to the surface was analyzed by Fourier transform infrared (FTIR) microscopy. Additionally, electrical measurement on the anti-fogging membrane at alternating currents and at a sweep frequency was proposed to test the conductivity and wetting ability of nonionic surfactants. We proved that the amphiphilic molecules had the ability to increase the conductivity in the polyolefin membrane. A correlation between the bulk electrical conductivity and the permanency of the fogging control on the LDPE/EVA coextruded film was found.

10.
J Chem Phys ; 145(19): 191101, 2016 Nov 21.
Article in English | MEDLINE | ID: mdl-27875862

ABSTRACT

The recent predictions of the self-consistent generalized Langevin equation theory, describing the existence of unusual partially arrested states in the context of ionic liquids, were probed using all-atom molecular dynamics simulations of a room-temperature ionic liquid. We have found a slower diffusion of the smaller anions compared with the large cations for a wide range of temperatures. The arrest mechanism consists on the formation of a strongly repulsive glass by the anions, stabilized by the long range electrostatic potential. The diffusion of the less repulsive cations occurs through the holes left by the small particles. All of our observations in the simulated system coincide with the theoretical picture.

11.
J Phys Chem B ; 120(25): 5678-90, 2016 06 30.
Article in English | MEDLINE | ID: mdl-27268257

ABSTRACT

In this work, we have performed molecular dynamics (MD) simulations to compare the structural and dynamical properties of three ionic liquids (ILs), 1-ethyl-3-methyl-imidazolium tetrafluorborate ([EMI(+)][BF4(-)]), 1,1'-dimethyl-4,4'-bipyridinium bis(tetrafluorborate) ([VIO(2+)][BF4(-)]2), and 1,1'-dimethyl-4,4'-bipyridinium bis(trifluoromethylsulfonyl)imide (bistriflimide in short) ([VIO(2+)][Tf2N(-)]2), aiming to discover the influence of ion rigidity on the physical properties of ILs. [VIO(2+)] is more rigid than [EMI(+)], and [BF4(-)] is more rigid than [Tf2N(-)]. [VIO(2+)][BF4(-)]2 has an anion distribution different from the other two by the higher and sharper peaks in the cation-anion radial distribution functions, reflecting a close-packed local structure of anions around cations. [VIO(2+)][BF4(-)]2 and [VIO(2+)][Tf2N(-)]2 have similar dynamics much slower than [EMI(+)][BF4(-)], and [VIO(2+)][Tf2N(-)]2 shows a more isotropic molecular distribution than [VIO(2+)][BF4(-)]2 and [EMI(+)][BF4(-)]. Additionally, we have simulated two modified viologen-based ILs to reinforce our interpretations. We conclude from the above simulation results that the rigidity of anions influences the alignment of cations and that the rigidity of cations shows a large obstacle to their rotational capacity. Moreover, we have observed a slower diffusion of [VIO(2+)][BF4(-)]2 due to the electrostatic correlations, which stabilizes the ion-cage effect.

12.
Proc Biol Sci ; 283(1823)2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26791614

ABSTRACT

Studies dealing with the effects of changing global temperatures on living organisms typically concentrate on annual mean temperatures. This, however, might not be the best approach in temperate systems with large seasonality where the mean annual temperature is actually not experienced very frequently. The mean annual temperature across a 50-year, daily time series of measurements at Helgoland Roads (54.2° N, 7.9° E) is 10.1°C while seasonal data are characterized by a clear, bimodal distribution; temperatures are around 6°C in winter and 15°C in summer with rapid transitions in spring and autumn. Across those 50 years, the temperature at which growth is maximal for each single bloom event for 115 phytoplankton species (more than 6000 estimates of optimal temperature) mirrors the bimodal distribution of the in situ temperatures. Moreover, independent laboratory data on temperature optima for growth of North Sea organisms yielded similar results: a deviance from the normal distribution, with a gap close to the mean annual temperature, and more optima either above or below this temperature. We conclude that organisms, particularly those that are short-lived, are either adapted to the prevailing winter or summer temperatures in temperate areas and that few species exist with thermal optima within the periods characterized by rapid spring warming and autumn cooling.


Subject(s)
Climate Change , Ecosystem , Oceans and Seas , Temperature , Animals , Models, Biological , Periodicity , Seasons
13.
Phys Rev Lett ; 107(15): 155701, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-22107301

ABSTRACT

We employ the principle of dynamic equivalence between soft-sphere and hard-sphere fluids [Phys. Rev. E 68, 011405 (2003)] to describe the interplay of the effects of varying the density n, the temperature T, and the softness (characterized by a softness parameter ν(-1)) on the dynamics of glass-forming soft-sphere liquids in terms of simple scaling rules. The main prediction is the existence of a dynamic universality class associated with the hard-sphere fluid, constituted by the soft-sphere systems whose dynamic parameters depend on n, T, and ν only through the reduced density n*≡nσ(HS)(T*,ν). A number of scaling properties observed in recent experiments and simulations involving glass-forming fluids with repulsive short-range interactions are found to be a direct manifestation of this general dynamic equivalence principle.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(6 Pt 1): 060501, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21797290

ABSTRACT

We report a systematic molecular dynamics study of the isochoric equilibration of hard-sphere fluids in their metastable regime close to the glass transition. The thermalization process starts with the system prepared in a nonequilibrium state with the desired final volume fraction ϕ for which we can obtain a well-defined nonequilibrium static structure factor S(0)(k;ϕ). The evolution of the α-relaxation time τ(α)(k) and long-time self-diffusion coefficient D(L) as a function of the evolution time t(w) is then monitored for an array of volume fractions. For a given waiting time the plot of τ(α)(k;ϕ,t(w)) as a function of ϕ exhibits two regimes corresponding to samples that have fully equilibrated within this waiting time [ϕ≤ϕ(c)(t(w))] and to samples for which equilibration is not yet complete [ϕ≥ϕ(c)(t(w))]. The crossover volume fraction ϕ(c)(t(w)) increases with t(w) but seems to saturate to a value ϕ(a)≡ϕ(c)(t(w)→∞)≈0.582. We also find that the waiting time t(w)(eq)(ϕ) required to equilibrate a system grows faster than the corresponding equilibrium relaxation time, t(w)(eq)(ϕ)≈0.27[τ(α)(eq)(k;ϕ)](1.43), and that both characteristic times increase strongly as ϕ approaches ϕ(a), thus suggesting that the measurement of equilibrium properties at and above ϕ(a) is experimentally impossible.

SELECTION OF CITATIONS
SEARCH DETAIL
...